A Physicist’s Proof of the Lagrange-Good Multivariable Inversion Formula

نویسنده

  • Abdelmalek Abdesselam
چکیده

We provide yet another proof of the classical Lagrange-Good multivariable inversion formula using the techniques of quantum field theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lagrange Inversion for Species

1. Introduction. The Lagrange inversion formula is one of the fundamental results of enumerative combinatorics. It expresses the coefficients of powers of the compositional inverse of a power series in terms of the coefficients of powers of the original power series. G. Labelle [10] extended Lagrange inversion to cycle index series, which are equivalent to symmetric functions. Although motivate...

متن کامل

A short proof of the Lagrange-Good formula

Since Good’s paper [5j appeared in 1960, :i lot of other works have been published on this theme. Good’s proof of his theorem being analytical, <:he later authors considered Lagrange inversion within the theory of formal power series. The first attempt for a purely combinatorial proof was made by Chottin [ 1 j, who treated a special case of the two dimensional formula. Tutte gave an extensive d...

متن کامل

An alternative proof for the constructive Asymmetric Lovász Local Lemma

We provide an alternative constructive proof of the Asymmetric Lovász Local Lemma. Our proof uses the classic algorithmic framework of Moser and the analysis introduced by Giotis, Kirousis, Psaromiligkos, and Thilikos in " On the algorithmic Lovász Local Lemma and acyclic edge coloring " , combined with the work of Bender and Richmond on the multivariable Lagrange Inversion formula.

متن کامل

Lagrange Inversion and Schur Functions

Macdonald defined an involution on symmetric functions by considering the Lagrange inverse of the generating function of the complete homogeneous symmetric functions. The main result we prove in this note is that the images of skew Schur functions under this involution are either Schur positive or Schur negative symmetric functions. The proof relies on the combinatorics of Lagrange inversion. W...

متن کامل

Lagrange Inversion: when and how

The aim of the present paper is to show how the Lagrange Inversion Formula (LIF) can be applied in a straight-forward way i) to find the generating function of many combinatorial sequences, ii) to extract the coefficients of a formal power series, iii) to compute combinatorial sums, and iv) to perform the inversion of combinatorial identities. Particular forms of the LIF are studied, in order t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002